HELICAL HYDROMAGNETIC DYNAMO

Yu. B. Ponomarenko ’ UDC 538.4

1. Examples of the self-excitation of a magnetic field {1-6] are of interest to hydromagnetic dynamo
theory. In the helical model of a dynamo the field is excited by discontinuous axisymmetric motion [5, 6]. The
case in which the axisymmetric motion may be continuous is discussed below,

The transition to continuous motion is accompanied by the emergence of a large number of solutions of
the dynamo problem which increase in time,

The induction equation (for a medium with a magnetic viscosity equal to unity) is

oH/dt = rot [UxH] + AH, (1.1

where the velocity U is given,

Let the velocity components in the cylindrical coordinates r, ¢, and z be U, = 0, U(p = rex(r), and Uy =
Ve {r). Assuming the field to be proportional toexp (im ¢ + ikz +pt), we obtain from (1.1)
(1.2)
(rDrD —m? —1 7 2m — %) Hy = F Y/,ir* (Hy + H_) Doy
(D=didr, =5+ ipe, SP=p-+& py=mog+ kvy)
for the quantities H, = Hp+iH,,.

The quantities
H., DH, & Yo (Hy + H.) {1.3)

should be continuous [5] on the discontinuity surface of the velocity or its derivative.

The solutions of the problem (1.2) and (1.3) should be continuous and vanish as r —, A field is gen-
erated if an eigenvalue p with a positive increment Y = Repexists. Generation is impossible if one of the
parameters m, k, or w is equal to zero [2, 7]. :

Let us assume that in some range of values of r
0y =0+ Q/r v, =v 4 Vi, (1.4)

where w, Q, v, and V are constants, We set
' p=me +kv, M= mQ + kV, ¢*= & -+ iu, (1.5)
N = (m?+ imQ)V2(| arg N| <Y n).

Then one can represent the solution of (1.2) in the form

N—m

Hy= Ails + ByKy — o (Azlz 4 ByKy), (1.6)

where A, and B, are constants and I and K are the modified Bessel functions of argument qr with indices
vy = (1 + m? + iM + 2N)V2 . a.m
Let us consider the case in which only the constants w and v in (1.4) and (1.5) are different from zero for

r<1and only @ and V are different from zero for r>1. Taking By =0forr<land A, =0 for r>1 in (1.6), one
can derive from (1.3) the dispersion relation

: . m R .2 . 2 2 X
21(0—@) (j- = frk-) = K =K+ A= 2k, + A (1.8)

m

. @ dl () KL () sKL(9) ‘
(]i— I+(q) ES I__(q)’ kiv_ K+ (S) =+ KT(S)’ |arg8‘<ﬂ/2 i

This relation has been investigated in [5] for § = V = 0 and large w, 4, and s. The case in which ¢ and V
may also be large is discussed below.

2. We will simplify (1.8) by assuming q and s to be large. The values of the quantities
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j+ = 29, j- = 2migq (lg] > m, |arg g| <Y,n) (2.1)
are obtained from the asymptotes [5, 8] of the functions I with fixed indices mx 1.

It is necessary for the determination of k; to use the asymptote of K, (s) with arbm'ary values of v/s,
since the indices (1.7) increase without limit as § and V increase,

One can derive the necessary asymptote from the equation {8]

Ky(s)="/ | exp(vt—scht)dt (jargs|<'/m)

-0

(2.2)

by the method of steepest descent.

We denote arg v = y. Since K, is an even function of v, it is possible to assume |$] < 5. It is suffi-
cient to consider the case J= 0, since a complex-conjugate value of the function (2.2) is obtained upon the
replacement of y and s by their complex-conjugate values.

For 0 v 1/,:n,th(a contour of steepest descent can pass through the saddle points
C tp=tm2 @+ ) @30, shty =5, Y >P>0)
with contributions to the integral (2.2) which are equal in absolute value,
The values of the quantity
t= SV = pei® (—n — 29 < 0 < 7t —~ 2¢)
for which these two conditions are satisfied lie on the line of zeros [8] of the function (2.2).

The contributions of the points t, are given by the expressions

%= Vrz:-a exp i (Yymv + Y = m), (2.3)
n= (’V/i) (ln (1 +6) - 1/’ Ing —6—~ 1/24.":) — 1/‘,"
. d=V11+%
in which all the radicals and logarithms are positive for positive values of » and £, It is assumed that
wo] > 1, > 1. (2.4)

The contributions of (2.3) are equal in absolute value if Im 7 = 0. The solution r(¢) of this equation in the
region r = 1 and -2y -w=6= —rcorresponds to the line of zeros I'. The limiting expressions of the line are

arg & = Yy(n/2 — ) (I6] < 1), (2.5)
p=4dexp [0+ n)tgp—2] (p K1)
For p = 1,41r the line T is the segment —1 = £=<0, The function (2.2) does not have zeros [8] on the ¢

plane outsideI’, Near and on I' the integral (2.2) is asymptotically equal to the sum of the contributions (2.3),
and far from it — to the largest of the contributions.

We note that » are the values of one and the same function on different sides of I'; n_ is obtained from
1+ by going clockwise around the point £ =—1,

It follows from (2.3) that

xK (s) itgn
-K_(E ‘Vﬁ{ ') (2.6)

where the upper factor is taken near and on T and the lower one is taken far from it. In the case <0 it is
_ necessary to multiply i by ¢ = sgn ¢ in (2.3) and (2.6).

According to (2.6), outside the lines of zeros I'y of the functions K,

k= — v (VEFI2VET ) (2= 54, e=v_/vy). 2.7
Near T_ the second radical in (2.7) is replaced by ic€6 tan 7, where now
8 =Vale® + 1, 6 = sgn Im (vie),
V+8 (2.8)

n=——-—[ln(1—|—6) 1 ln——ﬁ— ;ma] iu. ‘

In an analogous replacement of the first radical € = 1. Substitution of (2.1) and (2.7 into (1.8) gives
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VaVitiVote+s (Va+ Vidi Vet ) -(Vati-Vate)/6n)
1+ 2V (ViFT-Vits?)

2 . _ 2 2.9
_ 2m_=zm((ss)8 Q)Ea (Z*z___g_z__’ F= 22). (2.9)
V+VZ* v v L

It is shown below that no more than one eigenvalue satisfies Eq. (2.9). One can call this value isolated.
It exists only for large « and is characteristic of discontinuous motion. As a decreases, it vanishes, withdraw-
ing into a branch cut of the z plane or becoming nonisolated, approaching one of the lines I'; .

Nonisolated eigenvalues exist for small e. They are located near ', . The distance between adjacent
values of z decreases without bound as the velocities increase. The increments of these values canbe positive
if argvi] > Y,n; according to (1.7), this condition can be satisfied only for v_.

3. First we will consider the case p = M = (., Assuming Q to be large, we adopt

g = —isgn Q, |vy| > m, arg vy ~ Ygnsgn Q (3.1)
in (2.7)-(2.9).

Neglecting the second fraction in (2.9), we obtain

2 =(2Vz—Vz+ 1 — Vi< 1)L (3.2)

This equation is solvable in radicals, since it is reduced to a cubic equation by the substitution

Vix1=(ly = y)lV2 .
It is simpler to obtain the particular values z{a) directly from (3.2).
With A = [g|>1,
1 \8/3 g

= (—2- a)m = (é— mio—Q| ) Vi exp{%— insgn (@ — Q)] (3.3)

follows from (3.2). One can verify with the help of (2.9) that (3.3) is valid for small (it has been found earlier
[5] for Q = 0). The values of 4 and M may also turn out to differ from zero.

The determination of z for large Q is facilitated by the fact that # = arg a varies weakly. For example,

O =1,;n — 3gn sgn Q (@ <o, 0> 0). (3.4)
Let us find the value of ¢ for which z>0, We have from (3.2)
2a =Q2Vz—1z+ 1 — iVl -2 0 <z 1)
From this it follows that "
A =2V2Ve+1— V2, tg¢ = VI — 221z — Vz F 1.
Using (3.4) when Q@ >0, we obtain 2~ 0.9 and A = A;~(0.8. For Q <0 and z <0 the result is

A= 2Y2(VT =z — V=a), 129 =@V =2 — VI= )/ VT + 2 (~1 <z <0

Thus it follows from (3.4) that z ~ —0.1 and A ~ 0.5.

The particular values of z found are used for the qualitative plotting of graphs of z{(Q). The lines of
zeros I'y and the branch cut of the z plane are shown} in Fig. 1 for large Q< 0; plots of z(Q) as |Q] increases
from zero are shown by a solid curve for the case w = const>1 and by a dotted line for the case w™—Q =
const>>1, Similar curves are shown in Fig, 2 for Q >0. '

According to (2.5) and (3.1), |z~ 0.25 and |z]|~0.001 at the intersection points of the lines of zeros with
the branch cut.

It is evident in Fig. 1 that in the second case an isolated eigenvalue ceases to exist, withdrawing into the
branch cut; then {z| ~ 0,1 and A ~ 0.4,

It is evident in Fig, 2 that in both cases when A is somewhat less than A the eigenvalue apprdaches Tr_
and then remains there, differing not at all from the other eigenvalues near I'_, In the first case a new iso-
lated eigenvalue arises which emerges from the branch cut; then € > w, and the values |zl ~ 0,1 and A~ 0.4
are equal to those found for @ <0. '

tThe generally adopted coordinate system is used: The real and imaginary axes pass through zero horizontally
to the right and vertically upward.
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4, As o] increases, nonisolated eigenvalues emerge from the branch cut and draw apart from it,
remaining near the lines of zeros,

We will restrict ourselves to consideration of the eigenvalues near I'_, since the increment is positive
only for them, Making the replacement (2.7) with (3.1) taken into account, we obtain from (2.9)

Viti+:Vi—YaVeti—aViViri+1) (4.1)
ViVititethatals |

b4
i
tgn=g¢

G=1T—z n=velln (1 +8 —Yylnz —8] — Y,x)."

For small 6 we find
afn — Yy) = N = 3v48° — 1/4“ (811, »n=1,2,.) 4.2)

from (4.1). Thence

6= [321;‘ (n - 1/4') (sgnImv_)v_]"3, p=—k*—v2 42 & 4.3)

follows from (3.1), (2.7), and (1.2).

It is evident from (4.2), (4.1), and (2.6) that the eigenvalues coincide with the zeros of K_ in the approxi-
mation (4.2). One can explain this coincidence as follows.

The left- and right-hand sides of (1.8) differ by some finite value if the derivative K! /K_ is equal to zero.
It is evident from (2.6) that this derivative is small everywhere when § is small except for a small neighbor-
hood of the zeros of K_. The derivative takes on any value in the neighborhood of each zero, including the
value for which (1.8) is satisfied.

The inequalities (2.4) and (4.2) are satisfied for (4.3) if |v-[¥3 > n1/8 > 1. When these conditions are
violated, the deviation from the value determined from (4.3) can be of the order of the distance to the neighbor-
ing value.

In the case n~ |v_| one can substitute the value of z determined from the first of Egs. (4.1) into the right-
hand side of (4.1).

In the case n~1 it is necessary [8] to use Nicholson's approximation instead of (2.3). In this approxi-
mation the equation K_ = 0 is converted to the form

Jys (1) + J—ys (v) = Oz = 4w, 5%.
Equation (4.2) is obtained from the above with 7>>1. The roots 7 = 2.38 and 5.51 are also close to (4.2) for
n= 1.2, Therefore (4.3) is valid for n~1.

It was assumed above thatp = M = 0, Equations (4.3) prove to be valid in the general case (their deri-
vation from (2.9) and (2.8) is not altered).

It is evident from (4.3) and (1.7) that p does not depend upon i and that
pMy~ —k —v2=p0)—iM (|nM["*<|N|).
For M= M, = 2 Im N, the number p is real, and the increment
y=0b—k*— [3n(n —Y)bl2 (b =2Re N — m? — 1)

is a maximum and positive for b>b,(k, n). The critical value b, increases as k and n increase. As [M— M,]
increases, the increment drops off to y ~ Rev26? < 0 and generation is curtailed. The increment decreases as

n increases.

The isolated eigenvalue satisfies the relationship
’p(p,, M) =p0, M — p) — in. . (4.4)
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This follows from the preservation of Egs. (2.7) and (2.9) upon the replacement in them of z and v, (M) by z,
and vi (M - B). According to (4.4), the general case reduces to the case y = 0, and the case £ = M reduces to
the one investigated above. The value (4.4) may be real as is the case for (4.3).

Smoothing of the velocities was achieved above by decreasing the sizes of their discontinuities. Another
smoothing method is the replacement of the discontinuity by a transition region 1 =r <r; in which the velocities.
(1.4) change continuously from constant values for r =1 to zero for r=rj. One can find the exact dispersion
relationship in this case. One should expect that both smoothing methods lead to similar changes in the spec-
trum of eigenvalues.

The example considered shows that smoothing of the velocities can appreciably alter the spectrum of the
dynamo problem.

The velocity distribution (1.4), for which Eqs. (1.2) are integrated exactly, was considered above. In the
case of arbitrary velocities one should use the WKB approximation to search for the integrals of {(1.2).

Many boundary-value bi‘oblems are presently discussed in this approximation with a fourth~order equa-
tion (two second-order equations), One should note the review by Erokhin and Moiseev [9], in which recent
achievements in this direction are summarized.
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